
SC22 | Dallas, TX | hpc accelerates.

Implementing Asynchronous Jacobi
Iteration on GPUs

Yu-Hsiang Mike Tsai1, Pratik Nayak1, Edmond Chow2, Hartwig Anzt3,1

1. Steinbuch Centre for Computing, Karlsruhe Institute of Technology
2. School of Computational Science and Engineering, Georgia Institute of Technology
3. Innovative Computing Laboratory, University of Tennessee

SC22 | Dallas, TX | hpc accelerates.

Jacobi Iteration

step by step

2

SC22 | Dallas, TX | hpc accelerates.

Asynchronous Jacobi Iteration (static)

3

SC22 | Dallas, TX | hpc accelerates.

Asynchronous Jacobi Iteration (dynamic)

Only assign the number of threads <= the number of rows based on the
architecture

4

The same background means the same #update of thread.
They do not run simultaneously

SC22 | Dallas, TX | hpc accelerates.

Experiments setup

● We use CUDA 11.4.2 and g++ 9.3.0 (c++14) on V100 GPU

● Focus on Laplacin 2D 5pt stencil problem on grid sizes (100 x 100), (200 x

200), (300 x 300), which gives us matrices of size (10000 x 10000), (40000 x

40000), (90000 x 90000)

● The values are stored in double precision (IEEE 64-bit representation)

● We perform 10 warm-up runs and 100 runs for measurements

● The number of iterations is chosen from 10 to 1000

● Measurements are collected only after all iterations have completed.

5

SC22 | Dallas, TX | hpc accelerates.

2D 5pt stencil problem - results per update

6

SC22 | Dallas, TX | hpc accelerates.

2D 5pt stencil problem - results per update

7

async: quick updating but slightly slow convergence

SC22 | Dallas, TX | hpc accelerates.

2D 5pt stencil problem - residual reduction over time

8

SC22 | Dallas, TX | hpc accelerates.

grid size (300 x 300) - results per update

9

SC22 | Dallas, TX | hpc accelerates.

grid size (300 x 300) - results per update

10

dynamic async takes similar time but better convergence

SC22 | Dallas, TX | hpc accelerates.

grid size (300 x 300) - residual norm reduction over time

Two kinds gives a different trend

- async (nothreadfence)
- static(subwarp 32)

11

SC22 | Dallas, TX | hpc accelerates.

Analysis process

We focus on the 5-pt stencil stored in double precision.
We store the information to the output.
 i.e. 5 information needs to be embedded in 64 bits. (64/5 ~= 12.~)

The value will be [0, 1, 2, 3, 4] not [-0.25, -0.25, 1, -0.25, -0.25].
With val * 12 shift and 0xFFF mask, we can extract/embed the information

●

12

SC22 | Dallas, TX | hpc accelerates.

The recorded event

To avoid we are far from the practical implementation, we use alpha = 1 to ensure
we have the same amount of memory read. i.e. update value with the desired
information + (1 - alpha) * (the missing entry in the desired information)

- time: when does the whole process of each elements start and end ?
- update source: what is the index of source for this update ?

- Final update value age: get the update source in the final update
- Midway update value age: get the update source in the midway through whole process

13

SC22 | Dallas, TX | hpc accelerates.

The recorded event

- time: when does the whole process of each elements start and end ?
- update source: what is the index of source for this update ?

- Final update value age: get the update source in the final update
- Midway update value age: get the update source in the midway through whole process

14

SC22 | Dallas, TX | hpc accelerates.

Too many threads leads update part by part

When the number of threads exceeds the
number of parallel resource, cuda will finish
the first part completely and then next part.

the limit of this problem on V100 is
80(#stream multiprocessor)*2048/32
= 5120

15

SC22 | Dallas, TX | hpc accelerates.

Group the update type

Each elements denotes the number of
connection.

The update type can be represented as

<#connection of target>_<#connection of source>

16

SC22 | Dallas, TX | hpc accelerates.

the boxplot of midway update value age of 1000 iteration

17

SC22 | Dallas, TX | hpc accelerates.

threadfence ensure update

threadfence is to avoid the outdated cache
such that the order of update is indeed
recognized by others. Without threadfence, the
thread may take the old one in cache even the
element is already updated in global memory.

Note. syncthreads/syncwarp gives a barrier
among block/warp.

18

SC22 | Dallas, TX | hpc accelerates.

async static(subwarp 1) analysis

3_3 and 4_4 shows small variance in
the boxplot due to the same work from
the source to target.

2_3/3_2 and 3_4/4_3 show the
reversed trend

points with 3 connection has less work
than points 4 connection such that
4(target)_3(source) shows the index of
source is newer than the target

19

SC22 | Dallas, TX | hpc accelerates.

dynamic shows the smaller variance than static

The threads do not work on the same
row, so it somehow shuffle the workload
to give load balance.

20

SC22 | Dallas, TX | hpc accelerates.

Larger 2D and 3D cases

21

SC22 | Dallas, TX | hpc accelerates.

Conclusion

- We show the performance benefit from the asynchronous version
- We design a way to record information during the update such that we can

analysis the reason of performance and the result quality
- It also works on the large case and the matrix with more dependence

The codes are available in https://doi.org/10.5281/zenodo.7130225 for these
experiments, which based on Ginkgo sparse linear algebra library
https://github.com/ginkgo-project/ginkgo
The numerical analysis is available in
Chow, Edmond, Andreas Frommer, and Daniel B. Szyld. "Asynchronous
Richardson iterations: theory and practice." Numerical Algorithms 87.4 (2021):
1635-1651.

22

https://doi.org/10.5281/zenodo.7130225
https://github.com/ginkgo-project/ginkgo

